giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2022 - 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; đề thi gồm 08 trang với 50 câu trắc nghiệm, thời gian làm bài 180 phút (không kể thời gian phát đề); đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi Diễn Đàn Giáo Viên Toán).
1. Giới thiệu về tài liệu, đề thi
TAODETHI.xyz giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; đề thi gồm 08 trang với 50 câu trắc nghiệm, thời gian làm bài 180 phút (không kể thời gian phát đề); đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi Diễn Đàn Giáo Viên Toán).
2. Nội dung chính của tài liệu, đề thi
Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Thanh Hóa:
+ Cho mặt cầu (S) có tâm O và A là một điểm nằm trên (S). Gọi I K là hai điểm trên đoạn OA sao cho OI IK KA. Các mặt phẳng (P), (Q) lần lượt đi qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính lần lượt là 1r và 2r. Tính tỷ số 2 1 r r.
+ Cho hình trụ có đáy là hai đường tròn tâm O và tâm O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy hai điểm A D sao cho AD a 15; gọi C là hình chiếu vuông góc của D lên mặt phẳng chứa đường tròn tâm (O’); trên đường tròn tâm (O’) lấy điểm B (AB CD chéo nhau). Đặt α là góc giữa AB với đáy. Tính tanα khi thể tích khối tứ diện ABCD đạt giá trị lớn nhất.
+ Cho hình vuông kích cỡ 4 x 4 như hình vẽ. Sắp xếp ngẫu nhiên các số tự nhiên từ 1 đến 16 vào 16 ô vuông. Tính xác suất để có tổng bốn số ở các ô trong cùng một hàng hay cùng một cột đều là một số lẻ.
+ Cho mặt cầu (S) có tâm O và A là một điểm nằm trên (S). Gọi I K là hai điểm trên đoạn OA sao cho OI IK KA. Các mặt phẳng (P), (Q) lần lượt đi qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính lần lượt là 1r và 2r. Tính tỷ số 2 1 r r.
+ Cho hình trụ có đáy là hai đường tròn tâm O và tâm O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy hai điểm A D sao cho AD a 15; gọi C là hình chiếu vuông góc của D lên mặt phẳng chứa đường tròn tâm (O’); trên đường tròn tâm (O’) lấy điểm B (AB CD chéo nhau). Đặt α là góc giữa AB với đáy. Tính tanα khi thể tích khối tứ diện ABCD đạt giá trị lớn nhất.
+ Cho hình vuông kích cỡ 4 x 4 như hình vẽ. Sắp xếp ngẫu nhiên các số tự nhiên từ 1 đến 16 vào 16 ô vuông. Tính xác suất để có tổng bốn số ở các ô trong cùng một hàng hay cùng một cột đều là một số lẻ.
3. Xem trước tài liệu, đề thi
4. Tải xuống tài liệu, đề thi
5. Làm bài thi Online đề thi này
Theo TOANMATH
Link bài gốc: https://toanmath.com/2023/02/de-hoc-sinh-gioi-toan-thpt-cap-tinh-nam-2022-2023-so-gddt-thanh-hoa.html