giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán THPT năm học 2024 - 2025 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 21 tháng 08 năm 2024.
1. Giới thiệu về tài liệu, đề thi
TAODETHI.xyz giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán THPT năm học 2024 – 2025 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 21 tháng 08 năm 2024.
2. Nội dung chính của tài liệu, đề thi
Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán THPT năm 2024 – 2025 sở GD&ĐT Hải Dương:
+ Trong mỗi ô vuông đơn vị của bảng n ta điền số 1 hoặc −1. Sau đó, ở mỗi bước, ta chọn 1 ô và đổi dấu tất cả các số của 2 1 n ô cùng hàng hoặc cùng cột với ô đó. Tìm số nguyên dương k lớn nhất sao cho với mọi trạng thái điền số ban đầu, sau hữu hạn bước ta có thể nhận được bảng có ít nhất k số 1 trong mỗi trường hợp sau: a) n = 4. b) n = 2025.
+ Cho tam giác ABC không cân, nội tiếp đường tròn O. Đường tròn nội tiếp I của tam giác ABC tiếp xúc với CA AB lần lượt tại E và F. Gọi J là tâm đường tròn bàng tiếp góc A của tam giác ABC, M và N là trung điểm JF JE. a) Chứng minh rằng BM CN. b) Giả sử BM cắt CN tại P. Chứng minh rằng P nằm trên đường tròn O.
+ Cho số nguyên dương k và số nguyên tố p k 6 1. Với mỗi số nguyên dương m không chia hết cho p ta kí hiệu m a là số nguyên dương không vượt quá p thỏa mãn 1 (mod ) m a p m. Chứng minh rằng 2 1 0 mod i p a.
+ Trong mỗi ô vuông đơn vị của bảng n ta điền số 1 hoặc −1. Sau đó, ở mỗi bước, ta chọn 1 ô và đổi dấu tất cả các số của 2 1 n ô cùng hàng hoặc cùng cột với ô đó. Tìm số nguyên dương k lớn nhất sao cho với mọi trạng thái điền số ban đầu, sau hữu hạn bước ta có thể nhận được bảng có ít nhất k số 1 trong mỗi trường hợp sau: a) n = 4. b) n = 2025.
+ Cho tam giác ABC không cân, nội tiếp đường tròn O. Đường tròn nội tiếp I của tam giác ABC tiếp xúc với CA AB lần lượt tại E và F. Gọi J là tâm đường tròn bàng tiếp góc A của tam giác ABC, M và N là trung điểm JF JE. a) Chứng minh rằng BM CN. b) Giả sử BM cắt CN tại P. Chứng minh rằng P nằm trên đường tròn O.
+ Cho số nguyên dương k và số nguyên tố p k 6 1. Với mỗi số nguyên dương m không chia hết cho p ta kí hiệu m a là số nguyên dương không vượt quá p thỏa mãn 1 (mod ) m a p m. Chứng minh rằng 2 1 0 mod i p a.
3. Xem trước tài liệu, đề thi
4. Tải xuống tài liệu, đề thi
5. Làm bài thi Online đề thi này
Theo TOANMATH
Link bài gốc: https://toanmath.com/2024/08/de-chon-doi-tuyen-thi-hsg-qg-mon-toan-thpt-nam-2024-2025-so-gddt-hai-duong.html